Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The inequality $\frac{2}{x} < 3$ is true, when $x$ belongs to

Linear Inequalities

Solution:

Case $I$ :
When $x > 0, \frac{2}{x} < 3 \Rightarrow 2 < 3x \Rightarrow \frac{2}{3} < x$ or $x >\frac{2}{3}$
Case $II$ :
When $x > 0$, $\frac{2}{x} < 3 \Rightarrow 2 < 3x \Rightarrow \frac{2}{3} > x$ or $x <\frac{2}{3}$
which is satisfied when $x < 0$.
$\therefore \quad x\in \left(-\infty,\,0\right) \cup \left(\frac{2}{3}, \,\infty\right)$.