Q. The indefinite integral $I=\displaystyle \int \frac{\left(sec\right)^{2} x tan x \left(sec x + tan x\right) d x}{\left(\left(sec\right)^{5} x + \left(sec\right)^{2} x \left(tan\right)^{3} x - \left(sec\right)^{3} x \left(tan\right)^{2} x - \left(tan\right)^{5} x\right)}$ simplifies to $\frac{1}{3}ln \left|f \left(x\right)\right|+c,$ where $f\left(\frac{\pi }{4}\right)=2\sqrt{2}+1$ and $c$ is the constant of integration. If the value of $f\left(\frac{\pi }{3}\right)$ is $a+\sqrt{b},$ then the value of $b-3a$ is equal to
NTA AbhyasNTA Abhyas 2020Integrals
Solution: