Thank you for reporting, we will resolve it shortly
Q.
The indefinite integral $\int e^{e^{x} \frac{x e^{x} \cdot \ln x+1}{x}} d x$ simplifies to (where, $c$ is the constant of integration)
NTA AbhyasNTA Abhyas 2022
Solution:
Given integral is $I=\int e^{e^{x}} \cdot e^{x} \cdot \ln x+\frac{e^{e^{x}}}{x} d x$
Let, $e^{e^{x}}=f x$ and $\ln x=g x$
$\therefore I=\int f^{\prime} x g x+f x g^{\prime} x d x$
$=f x \cdot g x+c$
$=e^{e^{x}} \cdot \ln x+c$