Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The indefinite integral $\displaystyle \int e^{e^{x}} \left(\frac{x e^{x} \cdot ln x + 1}{x}\right)dx$ simplifies to (where, $c$ is the constant of integration)

NTA AbhyasNTA Abhyas 2020Integrals

Solution:

Given integral is $I=\int\left(e^{e^{x}} \cdot e^{x} \cdot \ln x+\frac{e^{e^{x}}}{x}\right) d x$
Let, $e^{e^{x}}=f(x)$ and $\ln x=g(x)$
$\therefore I=\int\left(f^{\prime}(x) g(x)+f(x) g^{\prime}(x)\right) d x$
$=f(x) \cdot g(x)+c$
$=e^{e^{x}} \cdot \ln x+c$