Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The imaginary roots of the equation $\left(x^2+2\right)^2+8 x^2=6 x\left(x^2+2\right)$ are

Complex Numbers and Quadratic Equations

Solution:

$\left(x^2+2\right)^2+8 x^2=6 x\left(x^2+2\right)$
$\left(x^2+2\right)^2-6 x\left(x^2+2\right)+8 x^2=0$
$x^2+2=\frac{6 x \pm \sqrt{36 x^2-32 x^2}}{2}$
$x^2+2==3 x \pm x$
$x^2+2=4 x, D>0 $ roots are real
$x^2+2=2 x$
$x=1 \pm i$