Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The image of the line $\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-4}{-5}$ in the plane $2 x - y + z+ 3 = 0$ is the line.

JEE MainJEE Main 2014Three Dimensional Geometry

Solution:

image
$\frac{a-1}{2}=\frac{b-3}{-1}=\frac{c-4}{1}=\lambda $
$\Rightarrow a=2 \lambda+1 $
$b=3-\lambda $
$c=4+\lambda $
$P \equiv\left(\lambda+1,3-\frac{\lambda}{2}, 4+\frac{\lambda}{2}\right) $
$2(\lambda+1)-\left(3-\frac{\lambda}{2}\right)+\left(4+\frac{\lambda}{2}\right)+3=0$
$2 \lambda+2-3+\frac{\lambda}{2}+4+\frac{\lambda}{2}+3=0$
$3 \lambda+6=0$
$ \Rightarrow \, \lambda=-2$
$a=-3, \,b=5, \,c=2$
So the equation of the required line is
$\frac{x+3}{3}=\frac{y-5}{1}=\frac{z-2}{-5}$