Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The harmonic mean of two numbers is 4 and the arithmetic and geometric mean satisfy the relation 2 A + G2 =27 , the numbers are
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The harmonic mean of two numbers is $ 4 $ and the arithmetic and geometric mean satisfy the relation $ 2\, A + G^2 =27 $ , the numbers are
UPSEE
UPSEE 2012
A
6 , 3
B
5 , 4
C
5 , -2.5
D
-3 , 1
Solution:
Let numbers be $x$ and $y$.
Then, $A=\frac{1}{2}(x+y), \sqrt{x y}=G$ or $G^{2}=x y$
and $\frac{2 x y}{x+y}=4$
$\Rightarrow G^{2}=4 A$
Also, $2 A+G^{2}=2 A+4 A=27 \Rightarrow A=\frac{9}{2}$
So, $x+y=9, x y=18$
Hence. numbers are $6$ and $3$ .