Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The greatest integer less than or equal to the sum of first 100 terms of the sequence $\frac{1}{3}, \frac{5}{9}, \frac{19}{27}, \frac{65}{81}, \ldots \ldots$ is equal to

JEE MainJEE Main 2022Sequences and Series

Solution:

$\frac{1}{3}+\frac{5}{9}+\frac{19}{27}+\frac{65}{81}+\ldots$
$\left(1-\frac{2}{3}\right)+\left(1-\frac{4}{9}\right)+\left(1-\frac{8}{27}\right)+\left(1-\frac{16}{81}\right) \ldots .100$ terms
$100-\left[\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\ldots\right]$
$100-\frac{\frac{2}{3}\left(1-\left(\frac{2}{3}\right)^{100}\right)}{1-\frac{2}{3}}$
$100-2\left(1-\left(\frac{2}{3}\right)^{100}\right)$
$S =98+2\left(\frac{2}{3}\right)^{100}$
$\Rightarrow[ S ]=98$