Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The greatest and least value of $y=3 \cos \left(\theta+\frac{\pi}{3}\right)+5 \cos \theta+3$ are respectively

Trigonometric Functions

Solution:

$y=3 \cos \left(\theta+\frac{\pi}{3}\right)+5 \cos \theta+3$
$y=3 \cos \theta \cdot \frac{1}{2}-3 \frac{\sqrt{3}}{2} \sin \theta+5 \cos \theta+3$
$y=\frac{3}{2} \cos \theta-\frac{3 \sqrt{3}}{2} \sin \theta+5 \cos \theta+3$
$y=\frac{13}{2} \cos \theta-\frac{3 \sqrt{3}}{2} \sin \theta+3$
$y_{\max }=\sqrt{\frac{169}{4}+\frac{27}{4}}+3=7+3=10$
$y_{\min }=-\sqrt{\frac{169}{4}+\frac{27}{4}}+3=-7+3=-4$