Q. The graph of the function $f(x)=x^{10}+9 x^9+7 x^8+\ldots \ldots \ldots . . .+a_1 x+a_0$ intersect the line $y=b$ at the points $B _1, B _2, B _3, \ldots \ldots, B _{10}$ (from left to right) and the line $y = c$ at the points $C _1, C _2, C _3, \ldots \ldots$, $C _{10}$ (from left to right). Let $P$ be a point on the line $y = c$ to the right of the point $C _{10}$. If $b =5$ and $c=3$, then find the sum $\displaystyle\sum_{n=1}^{10} \cot \left(\angle B_n C_n P\right)$.
Complex Numbers and Quadratic Equations
Solution: