Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The general solution to the equation $\tan \theta+\tan 4 \theta+\tan 7 \theta=\tan \theta \tan 4 \theta \tan 7 \theta$ is

Trigonometric Functions

Solution:

From the given equation, we have
$\frac{\tan \theta+\tan 4 \theta}{1-\tan \theta \tan 4 \theta}=-\tan 7 \theta$
$\Rightarrow \tan (\theta+4 \theta)=-\tan 7 \theta$
$\Rightarrow \tan 5 \theta=\tan (-7 \theta)$
$\Rightarrow 5 \theta=n \pi-7 \theta$
$\Rightarrow \theta=n \pi 12,$ where $n \in Z, \text { but } n \neq 6,18,30 \ldots$