Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The general solution of the differential equation $y-\frac{d y}{d x} x=y^2 \cos x(1-\sin x)$ is

Differential Equations

Solution:

$y-\frac{d y}{d x} \cdot x=y^2 \cos x(1-\sin x)$
$\Rightarrow \frac{y d x-x d y}{y^2}=\cos x(1-\sin x) d x $
$\Rightarrow \int d\left(\frac{x}{y}\right)=\int\left(\cos x-\frac{\sin 2 x}{2}\right) d x $
$\Rightarrow \frac{x}{y}=\sin x+\frac{\cos 2 x}{4}+\text { C }$