Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The general solution of the differential equation $\frac{dy}{dx} + \sin (x + y) = \sin (x -y) $ is

BITSATBITSAT 2013

Solution:

The equation is,
$\frac{d y}{d x}=\sin (x-y)-\sin (x +y)=2 \cos x \sin (-y)$
$\Rightarrow \frac{d y}{\sin y}+2 \cos x d x=0$
$\Rightarrow \int \text{cosec} y d y+2 \int \cos x d x=C$
$\Rightarrow \log \tan \frac{y}{2}+2 \sin x=C$