Thank you for reporting, we will resolve it shortly
Q.
The general solution of the differential equation $\frac{d y}{d x}+\cos \frac{x+y}{2}=\cos \frac{x-y}{2}$ is :
Differential Equations
Solution:
Correct answer is (a) $ \ln \left(\tan \frac{ y }{4}\right)= C -2 \cos \frac{ x }{2} $Correct answer is (c) $\ln \left(\operatorname{cosec} \frac{ y }{2}-\cot \frac{ y }{2}\right)= C -2 \cos \frac{ x }{2} $Correct answer is (d) $\ln \left(\operatorname{cosec} \frac{ y }{2}+\cos \frac{ y }{2}\right)=2 \cos \frac{ x }{2}- C$