Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The general solution of $\left(\frac{d y}{d x}\right)^{2}=1-x^{2}-y^{2}+x^{2} y^{2}$ is

KCETKCET 2011Differential Equations

Solution:

Given, $\left(\frac{d y}{d x}\right)^{2}=1-x^{2}-y^{2}+x^{2} y^{2}$
$\Rightarrow \left(\frac{d y}{d x}\right)^{2}=\left(1-x^{2}\right)-y^{2}\left(1-x^{2}\right)$
$\Rightarrow \frac{d y}{d x}=\sqrt{\left(1-x^{2}\right)} \sqrt{\left(1-y^{2}\right)}$
$\quad \int \frac{d y}{\sqrt{\left(1-y^{2}\right)}}=\int \sqrt{\left(1-x^{2}\right)} d x$ (on integrating)
$\Rightarrow \sin ^{-1} y=\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x+\frac{C}{2}$
$\Rightarrow 2 \sin ^{-1} y=x \sqrt{1-x^{2}}+\sin ^{-1} x+C$