Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The general solution of $\cot\, \theta + \tan\, \theta = 2$ is

KCETKCET 2016Trigonometric Functions

Solution:

We have, $\cot\, \theta+\tan \,\theta=2$
$\Rightarrow \frac{\cos \,\theta}{\sin\, \theta}+\frac{\sin\,\theta}{\cos \,\theta} =2$
$\Rightarrow \frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \,\theta\, \cos\, \theta} =2 $
$ \Rightarrow 1 =2\, \sin \,\theta\, \cos\, \theta $
$ \Rightarrow \sin \,2 \theta =1 $
$ \Rightarrow \sin \,2 \theta =\sin \frac{\pi}{2} $
$ \Rightarrow 2 \theta =n \pi+(-1)^{n} \frac{\pi}{2} $
$ \therefore \theta =\frac{n \pi}{2}+(-1)^{n} \frac{\pi}{4}$