Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The function y=[x]+|1-x|,-1 ≤ x ≤ 3 Then f(x) is not differentiable at (where [ ⋅ represents greatest integer function)
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The function $y=[x]+|1-x|,-1 \leq x \leq 3$ Then $f(x)$ is not differentiable at (where [ $\cdot$ represents greatest integer function)
Continuity and Differentiability
A
two points
0%
B
three points
0%
C
four points
0%
D
five points
100%
Solution:
We have $y=[x]+|1-x|,-1 \leq x \leq 3$
or $y = \begin{cases} -1+1-x, & \text{ $-1 \leq x<\,0$} \\[2ex] 0+1-x, & \text{ $1 \leq x<\,1$ }\\[2ex] -1-1+x, & \text{ $1 \leq x<2$} \\[2ex] 2-1+x, & \text{ $2 \leq x < 3$} \\[2ex] 3- 1+x, & \text{ $x=3$} \\[2ex] \end{cases}$
or $y = \begin{cases} -x, & \text{ $-1 \leq x<\,0$} \\[2ex] 1-x, & \text{ $0 \leq x<\,1$ }\\[2ex] x, & \text{ $1 \leq x<2$} \\[2ex] 1+x, & \text{ $2 \leq x < 2$} \\[2ex] 5, & \text{ $x=3$} \\[2ex] \end{cases}$
Clearly, $f (x)$ is discontinuous at x = 0,1, 2, 3 and hence non-differentiable