Q. The function $sin^2 \,(\omega t)$ represents :
AIEEEAIEEE 2005Oscillations
Solution:
Here, $y - sin^2\, \omega t$
$\frac{dy}{dt}=2\,\omega\,sin\,cos\,\omega\,t=\omega\,2\,\omega t$
$\frac{d^{2}y}{dt^{2}}=2\,\omega^{2}\,cos\,2\,\omega t$
For SHM, $\frac{d^{2}y}{dt^{2}}\,\propto-y$
Hence, function is not $SHM$, but periodic. From the $y-t$ graph, time period is
$T=\frac{\pi}{\omega}$
