Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The function of $f(x)=|x|+\frac{|x|}{x}$ is

AP EAMCETAP EAMCET 2020

Solution:

$f(x)=|x|+\frac{|x|}{x}$
$LHL$ of $x=0$
$\displaystyle\lim _{x \rightarrow 0^{-}} f(x)=\displaystyle\lim _{x \rightarrow 0^{-}}-x+\frac{-x}{x}$
$=\displaystyle\lim _{x \rightarrow 0^{-}}-x-1=-1$
$\displaystyle\lim _{x \rightarrow 0^{+}} f(x)=\displaystyle\lim _{x \rightarrow 0^{+}}(x)+\frac{(x)}{x}$
$=\displaystyle\lim _{x \rightarrow 0^{+}} x+1=1$
$\therefore LHL \neq R H L$ at $x=0$
$\therefore f(x)$ is discontinuous at $x=0$