$\lim\limits _{ x \rightarrow 0} f ( x )=\lim \limits_{ x \rightarrow 0}\left(x \cdot \sin \left(\frac{1}{x}\right)\right)$
$=\lim\limits _{ x \rightarrow 0}( x ) \cdot \lim\limits _{ x \rightarrow 0}\left(\sin \left(\frac{1}{x}\right)\right)$
$=0$. ( a real number $)=0= f (0)$.