Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The function $f(x)=\begin{cases}x .\sin \left(\frac{1}{x}\right), x \neq 0 \\ 0, \quad x=0\end{cases}$ then

KCETKCET 2022

Solution:

$\lim\limits _{ x \rightarrow 0} f ( x )=\lim \limits_{ x \rightarrow 0}\left(x \cdot \sin \left(\frac{1}{x}\right)\right)$
$=\lim\limits _{ x \rightarrow 0}( x ) \cdot \lim\limits _{ x \rightarrow 0}\left(\sin \left(\frac{1}{x}\right)\right)$
$=0$. ( a real number $)=0= f (0)$.