Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The function $f(x) =\frac {x} {1+|x|}$ is

Application of Derivatives

Solution:

$f'\left(x\right) = \frac{\left(1+\left|x\right|\right)\cdot1-x\left(\pm1\right)}{\left[1+\left|x\right|\right]^{2}}$
$= \frac{1+\left|x\right|-\left|x\right|}{\left(1+\left|x\right|\right)^{2}}$
$= \frac{1}{\left(1+\left|x\right|\right)^{2}} > 0 \,\forall\,x \in R$
$\therefore f$ is strictly increasing.