Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The function $ f(x)=\frac{x}{1+{{x}^{2}}} $ decreases in the interval

J & K CETJ & K CET 2012Application of Derivatives

Solution:

Given, $ f(x)=\frac{x}{1+{{x}^{2}}} $
On differentiating w. r. t. x, we get
$ f'(x)=\frac{(1+{{x}^{2}})\,(1)\,-x\,(2x)}{{{(1+{{x}^{2}})}^{2}}} $
$ =\frac{1-{{x}^{2}}}{{{(1+{{x}^{2}})}^{2}}} $
For $ f(x) $ to be decreasing
$ f'(x)\le 0 $
$ \Rightarrow $ $ (1-{{x}^{2}})\le 0 $
$ \Rightarrow $ $ {{x}^{2}}\ge 1 $
$ \Rightarrow $ $ x\in (-\infty ,\,\,-1]\,\cup [1,\,\infty ) $