Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The function $ f(x)={{\tan }^{-1}}(\sin x+\cos x), $ $ x>0 $ is always an increasing function on the interval:

KEAMKEAM 2005

Solution:

$ \because $ $ f(x)={{\tan }^{-1}}(\sin x+\cos x) $
On differentiating w.r.t. $ x, $ we get
$ f(x)=\frac{1}{1+{{(\sin x+\cos x)}^{2}}}(\cos x-\sin x) $
$ =\frac{1}{1+1+2\sin x\cos x}(\cos x-\sin x) $
$ =\frac{\cos x-\sin x}{2(1+\sin x\cos x)} $
For function to be increasing $ f(x)>0 $
$ \Rightarrow $ $ \cos x-\sin x>0 $
$ \Rightarrow $ $ \tan x<1 $
$ \therefore $ Required interval $ =\left( 0,\frac{\pi }{4} \right) $