Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The function $f(x) = tan^{-1} (sin \,x + cos\, x)$ is an increasing function in

Inverse Trigonometric Functions

Solution:

$f'(x) = \frac{1}{1+(sin\,x + cos\,x)^2} (cos\,x - sin\,x)$
$f(x)$ is increasing if
$cos\,x - sin\,x > 0$
or $cos\,x > sin\,x$
Hence, $f(x)$ is increasing when
$x\in\left(-\frac{\pi}{2}, \frac{\pi}{4}\right)$