Q. The function $f(x)=\tan ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$ is
Application of Derivatives
Solution:
put $\mathrm{x}^{2}=\tan \theta$ to get
$f(x)=\frac{\pi}{4}-\tan ^{-1}\left(x^{2}\right)$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=-\frac{2 \mathrm{x}}{1+\mathrm{x}^{4}}$ which is greater than zero for $\mathrm{x}<0$ and less than zero for $\mathrm{x}>0$
$\Rightarrow (\mathrm{D})]$
