Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The function $f(x)=(\sin x)^{\sin x}$ attains its minimum value when $x$ equal

Application of Derivatives

Solution:

$ y=(\sin x)^{\sin x}=e^{\sin x \ln (\sin x)}$
$\frac{d y}{d x}=(\sin x)^{\sin x}[\sin x \cdot \cot x+\ln (\sin x) \cdot \cos x]=0$
hence $\cos x[1+\ln (\sin x)]=0$
$\cos x=0$ or $\ln (\sin x)=-1$
$\sin x =\frac{1}{ e } ; x =\sin ^{-1} \frac{1}{ e } $ or $ x =2 n \pi+\frac{\pi}{2}$