Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The function $ f(x)=\log (x+\sqrt{x^{2}+1}) $ is:

Jharkhand CECEJharkhand CECE 2004

Solution:

We have, $f(x)=\log \left(x+\sqrt{x^{2}+1}\right)$
$ \therefore f(-x)=\log \left(-x+\sqrt{x^{2}+1}\right) \times \frac{\left(x+\sqrt{x^{2}+1}\right)}{\left(x+\sqrt{x^{2}+1}\right)}$
$=\log \left(\frac{-x^{2}+x^{2}-1}{x+\sqrt{x^{2}+1}}\right)=-\log \left(x+\sqrt{x^{2}+1}\right) $
$\Rightarrow$ $f(-x)=-f(x)$
$ \therefore f(x)$ is an odd function.
(i) If $f(-x)=f(x)$, is an even function.
(ii) If $f(x+T)=f(x)$, is a periodic function with period $T$