Thank you for reporting, we will resolve it shortly
Q.
The function $f(x)=\int\limits_{0}^{x^{2}} \frac{t^{2}-1}{e^{t}+1} d t$ has
Application of Derivatives
Solution:
$ f^{\prime}(\mathrm{x})=\frac{2 \mathrm{x}\left(\mathrm{x}^{4}-1\right)}{\mathrm{e}^{\mathrm{x}^{2}}+1}$
$\mathrm{x}=0$ is the point of maxima
$\mathrm{x}= \pm 1$ is the point of minima.