Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The function $f(x)=\int\limits_0^x \sqrt{1-t^4} d t$ is such that :

Application of Derivatives

Solution:

$f(x) =\int\limits_0^x \sqrt{1-t^4} d t$
$f(-x) =\int\limits_0^{-x} \sqrt{1-t^4} d t$
$\left.=-\int\limits_0^x \sqrt{1-u^4} d u \,\,\, \text { (Put } t=-u\right)$
$f(-x)=-f(x) \Rightarrow $ ' $f$ ' is odd function.
Check other options.