Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The function $f\left(x\right)=e^{sin x + cos ⁡ x}$ $\forall x\in \left[0 , 2 \pi \right]$ attains local extrema at $x=\alpha $ and $x=\beta ,$ then $\alpha +\beta $ is equal to

NTA AbhyasNTA Abhyas 2020Application of Derivatives

Solution:

$f^{'} \left(x\right) = e^{sin x + cos x} \cdot \left(cos x - sin x\right)$
Solution
$\therefore f\left(x\right)$ attains local extrema at $x=\frac{\pi }{4},\frac{5 \pi }{4}$
i.e. $\alpha +\beta =\frac{6 \pi }{4}=\frac{3 \pi }{2}$