Q. the function $f ( x )=\left\{\begin{array}{cl} x + a \sqrt{2} \sin x & 0 \leq x <\frac{\pi}{4} \\ 2 x \cot x + b & \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \\ a \cos 2 x - b \sin x & \frac{\pi}{2} < x \leq \pi\end{array}\right.$ is continuous in $\left[0 \text{, } \pi \right]$ , then the values of $a$ and $b$ respectively are
NTA AbhyasNTA Abhyas 2020Continuity and Differentiability
Solution: