Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The function, $f(x)=(3 x-7) x^{2 / 3}, x \in R,$ is increasing for all $x$ lying in :

JEE MainJEE Main 2020Application of Derivatives

Solution:

$f(x)=(3 x-7) x^{2 / 3}$
$\Rightarrow f(x)=3 x^{5 / 3}-7 x^{2 / 3}$
$\Rightarrow f^{\prime}(x)=5 x^{2 / 3}-\frac{14}{3 x^{1 / 3}}$
$ =\frac{15 x-14}{3 x^{1 / 3}} >0$
image
$\therefore f(x)>0 \forall x \in(-\infty, 0) \cup\left(\frac{14}{15}, \infty\right)$