Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The frequency at which the inductive reactance of 2H inductance will be equal to the capacitive reactance of $2 \mu F$ capacitance (nearly)

Alternating Current

Solution:

$X _{ L }= X _{ C }$
$W L =\frac{1}{ WC }$
$W ^{2}=\frac{1}{ LC }$
$W =\sqrt{\frac{1}{ LC }}$
$f =\frac{1}{2 \pi} \sqrt{\frac{1}{ LC }}$
$=\frac{1}{2 \pi} \sqrt{\frac{1}{2 \times 2 \times 10^{-6}}}$
$=\frac{1}{2 \pi} \times \frac{1}{2 \times 10^{-3}}$
$=\frac{10^{3}}{4 \pi}$
$ =80\,Hz$