The dimensions of force $[ F ]=\left[M L T^{-2}\right]$ and density $[d]=\left[M L^{-3} T^{0}\right]$
From the given relation, $F=\frac{y}{\sqrt{d}}$
$\Rightarrow \,\,\,y=F \sqrt{d}$
Substituting the above dimensions, we get
$[y] =[F][d]^{1 / 2}=\left[M L T^{-2}\right]\left[M L^{-3} T^{0}\right]^{1 / 2} $
$=\left[M^{3 / 2} L^{-1 / 2} T^{-2}\right]$