$\left(\text{SF}\right)_{4} \Rightarrow \text{H} = \frac{1}{2} \left(6 + 4\right) = \left(\text{sp}\right)^{3} \text{d} \left(5\right)$
With one L.P see saw geometry
$\overset{ \rightarrow }{\mu } \neq 0$ has a value
$\mu > 0$ due to two S - F bonds in equatorial plane.