Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The first term of an infinitely decreasing GP. is unity and its sum is S. The sum of the squares of the terms of the progression is :

Sequences and Series

Solution:

$ S = a + ar + ar ^2+$ ........
$S=1+r+r^2+r^3+\ldots \ldots . . . . . . . (a=1)$
$S =\frac{1}{1- r } \Rightarrow 1- r =\frac{1}{ S } \Rightarrow r =1-\frac{1}{ S } \Rightarrow \frac{ S -1}{ S }= r$
$\text { Now } E = a ^2+( ar )^2+\left(a ar ^2\right)^2+ $......
$E = a ^2+ a ^2 r ^2+ a ^2 r ^4+ $ .....
$=\frac{ a ^2}{1- r ^2}=\frac{1}{1-\left(\frac{ S -1}{ S }\right)^2}=\frac{ S ^2}{ S ^2- S ^2-1+2 S }=\frac{ S ^2}{2 S -1} $