Q.
The first and the third quartiles of the data given below :
Marks No. of Students 0-10 4 10-20 8 20-30 11 30-40 15 40-50 12 50-60 6 60-70 3
are respectively
Marks | No. of Students |
---|---|
0-10 | 4 |
10-20 | 8 |
20-30 | 11 |
30-40 | 15 |
40-50 | 12 |
50-60 | 6 |
60-70 | 3 |
Statistics
Solution:
Here, we construct the cumulative frequency table
Class Frequency Cumulative frequency 0-10 4 4 10-20 8 12 20-30 11 12 30-40 15 38 40-50 12 50 5-60 6 56 6-70 3 59
For $Q_1$. Here $n=59 \Rightarrow \frac{n}{4}=\frac{59}{4}=14.75$
$\therefore $ Class of first quartile is $20 - 30$
$\Rightarrow Q_{1}=20+\frac{14.75-12}{11}\times10=20+\frac{27.5}{11}=22.5$
For $Q_{3}$. Here $\frac{3n}{4}=\frac{3\times59}{4}=44.25$
$\therefore $ Class of third quartile is $40-50$
$\Rightarrow Q_{3}=40+\frac{44.25-38}{12}\times 10=40+\frac{62.5}{12}=45.2$
Class | Frequency | Cumulative frequency |
---|---|---|
0-10 | 4 | 4 |
10-20 | 8 | 12 |
20-30 | 11 | 12 |
30-40 | 15 | 38 |
40-50 | 12 | 50 |
5-60 | 6 | 56 |
6-70 | 3 | 59 |