Q.
The Fibonacci sequence is defined by $a_1=a_2=1$ and $a_n=a_{n-1}+a_{n-2}, n>2$. Then, match the terms and ratios given in Column I with their values given in Column II and choose the correct option from the codes given below.
Column I
Column II
A
$ a_1, a_2, a_3$
1
$2,3,5$
B
$a_3, a_4, a_5$
2
$\frac{3}{2}, \frac{5}{3}, \frac{8}{5}$
C
$\frac{a_4}{a_3}, \frac{a_5}{a_4}, \frac{a_6}{a_5}$
3
$1,2, \frac{2}{3}$
D
$ \frac{a_2}{a_1}, \frac{a_3}{a_2}, \frac{a_3}{a_4}$
4
$1,1,2$
Column I | Column II | ||
---|---|---|---|
A | $ a_1, a_2, a_3$ | 1 | $2,3,5$ |
B | $a_3, a_4, a_5$ | 2 | $\frac{3}{2}, \frac{5}{3}, \frac{8}{5}$ |
C | $\frac{a_4}{a_3}, \frac{a_5}{a_4}, \frac{a_6}{a_5}$ | 3 | $1,2, \frac{2}{3}$ |
D | $ \frac{a_2}{a_1}, \frac{a_3}{a_2}, \frac{a_3}{a_4}$ | 4 | $1,1,2$ |
Sequences and Series
Solution: