Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The experimental data for the reaction
$2 A + B_2 \longrightarrow 2 AB$ is
The rate equation for the above data is
Exp. [A] $[B_2]$ Rate $(M\,s^{-1})$
1 0.50 0.50 $1.6 \times 10^{-4}$
2. 0.05 1.00 $3.2 \times 10^{-4}$
3. 1.00 1.00 $3.2 \times 10^{-4}$

AIPMTAIPMT 1997Chemical Kinetics

Solution:

Consider the following rate law equation,
$ \frac{dx}{dt}=k [A]^m [B_2]^n$
$ \, \, \, \, \, \, \, 1.6 \times 10^{-4}=k [0.50]^m [0.50]^n ...(i)$
$ \, \, \, \, \, \, \, 3.2 \times 10^{-4}=k [0.50]^m [1.0]^n ...(ii)$
$ \, \, \, \, \, \, \, 3.2 \times 10^{-4}=k [1.00]^m [1.0]^n ...(iii)$
From Eqs. (ii) and (iii)
$ \, \, \, \, \, \, \, \, \frac{3.2 \times 10^{-4}}{3.2 \times 10^{-4}}=\frac{k [1.00]^m [1.0]^n}{k [0.50]^m [1.0]^n}$
$ \, \, \, \, \, \, \, \, \, \, \, \, 1 =2^m \, \, \, \, or \, \, \, \, 2^0=2^m$
$\therefore \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, m=0$
From Eqs. (i) and (ii)
$ \, \, \, \, \, \, \, \, \frac{3.2 \times 10^{-4}}{1.6 \times 10^{-4}}=\frac{k [0.50]^m [1.0]^n}{k [0.50]^m [0.50]^n}$
$ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, 2= 2^n$
or $ \, \, \, \, \, \, \, \, \, \, \, \, \, 2^1=2^n$
$\therefore \, \, \, \, \, \, \, \, \, \, n=1$
Hence, rate
$ \big(\frac{dx}{dt}\big)=k [A]^0 [B_2]^1$
$ =k [B_2]$