Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The Euler form of $\frac{ 2 + 6\sqrt{3}i}{5 + i\sqrt{3}}$ is

Complex Numbers and Quadratic Equations

Solution:

Let $z = \frac{2 + 6\sqrt{3}i}{5 + i\sqrt{3}}$
$ = \frac{(2 + 6\sqrt{3}i)( 5 - i\sqrt{3})}{28}$
$ = 2\left(\frac{ 1 + i\sqrt{3}}{2}\right) = 2\left(cos \frac{\pi}{3} + i\, sin \frac{\pi}{3}\right) = 2e^{i\pi/3}$