Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The equipotential surfaces corresponding to bsingle positive charge are concentric spherical shells with the charge at its origin. The spacing between the surfaces for the same change in potential

Electrostatic Potential and Capacitance

Solution:

Let the equipotential surfaces have potential $V _{1}, V _{2}, V _{3}$ with, $V _{1}> V _{2}> V _{3}$
Also, let $V_{3}-V_{2}=V_{2}-V_{1}=R$
Potential of a charge is given by $kQ / r$
$V = kQ / r \Rightarrow r = kQ / V$
Distance between the equipotential surfaces is
$kQ \left(\frac{1}{ V _{2}}-\frac{1}{ V _{3}}\right) \text { and } kQ \left(\frac{1}{ V _{1}}-\frac{1}{ V _{2}}\right)$
or
$kQ \left(\frac{ V _{3}- V _{2}}{ V _{3} V _{2}}\right)$ and $kQ \left(\frac{ V _{2}- V _{1}}{ V _{2} V _{1}}\right)$
or
$kQ \left(\frac{ R }{ V _{3} V _{2}}\right)$ and $kQ \left(\frac{ R }{ V _{2} V _{1}}\right)$
Clearly $V _{2} V _{1}> V _{3} V _{2}$
Thus
$kQ \left(\frac{ R }{ V _{3} V _{2}}\right)> kQ \left(\frac{ R }{ V _{2} V _{1}}\right)$
Therefore spacing between surfaces decreases as potential increases i.e. $r$ decreases.
image