Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The equation x(3/4)( log2 x)2+ log2x-(5/4) =√ 2 has
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The equation $x^{\frac{3}{4}(\log_2 x)^2+\log_2x-\frac{5}{4}} =\sqrt 2$ has
IIT JEE
IIT JEE 1989
Complex Numbers and Quadratic Equations
A
atleast one real solution
22%
B
exactly three real solutions
31%
C
exactly one irrational solution
16%
D
complex roots
31%
Solution:
Given, $x^{\frac{3}{4}(\log_2 x)^2+\log_2x-\frac{5}{4}}=\sqrt2$
$\Rightarrow {\frac{3}{4}(\log_2 x)^2+\log_2x-\frac{5}{4}=\log_x\sqrt2}$
$\Rightarrow {\frac{3}{4}(\log_2 x)^2+\log_2x-\frac{5}{4}=\frac{1}{2\log_2x}}$
$\Rightarrow 3(\log_2 x)^3+4(\log_2x)^2-5(\log_2x)-2=0$
Put $ \log_2x=y$
$\therefore 3y^3+4y^2-5y-2=0$
$\Rightarrow (y-1)(y+2)(3y+1)=0$
$\Rightarrow y=1,-2,-1/3$
$\Rightarrow \log_2x=1,-2,-1/3$
$\Rightarrow x=2,\frac{1}{2^{1/3}},\frac{1}{4}$