Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The equation $ {{x}^{3}}-3x+4=0 $ has only one real root. What is its first approximate value as obtained by the method of false position in $ (-3,\,\,-2) $ ?

Jharkhand CECEJharkhand CECE 2011

Solution:

We have, $ {{x}_{2}}={{x}_{0}}-\frac{{{x}_{1}}-{{x}_{0}}}{f({{x}_{1}})-f({{x}_{0}})} $
Here, $ {{x}_{0}}=-3,\,\,{{x}_{1}}=-2,\,\,f(x)={{x}^{3}}-3x+4 $
$ \therefore $ $ f({{x}_{0}})=-27+9+4=-14 $
$ f({{x}_{1}})=-8+6+4=2 $
So, $ {{x}_{2}}=-3-\frac{1}{16}\times (-14) $
$ =-3+\frac{7}{8}=-\frac{17}{8}=-2.125 $