Thank you for reporting, we will resolve it shortly
Q.
The equation $x^{3}+3x^{2}+6x+3-2cosx=0$ has $n$ solution(s) in $\left(0,1\right)$ , then the value of $\left(n + 2\right)$ is equal to
NTA AbhyasNTA Abhyas 2022
Solution:
Let $f\left(x\right)=x^{3}+3x^{2}+6x+3-2cosx$
$f^{'}\left(x\right)=3x^{2}+6x+6+2sinx$
$f^{'}\left(x\right)=3\left(x^{2} + 2 x + 2\right)+2sinx$
$f^{'}\left(x\right)$ is always positive as the minimum value of $3\left(x^{2} + 2 x + 2\right)$ is $3$ and that of $2sinx$ is $-2,$ so $f\left(x\right)$ is increasing in $\left(0,1\right)$
$f\left(0\right)=1,f\left(1\right)=13-2cosx>0$
$f\left(x\right)=0$ has no solution in $\left(0,1\right)$
$n=0\Rightarrow n+2=2$