Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The equation $\sin ^{2} \theta=\frac{x^{2}+y^{2}}{2 x y}$ is possible if

Trigonometric Functions

Solution:

We have $\frac{x^{2}+y^{2}}{2 x y}=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}\right)$
Now, $\sin ^{2} \theta=\frac{x^{2}+y^{2}}{2 x y}$
$\Rightarrow \frac{x^{2}+y^{2}}{2 x y} \geq 0$
$\left[\because \sin ^{2} \theta \geq 0\right]$
Therefore, $x$ and $y$ have the same sign.
Now, $\frac{x^{2}+y^{2}}{2 x y}=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}\right)$
$\Rightarrow \frac{x^{2}+y^{2}}{2 x y} \geq 1$
$(\because A.M. \geq G.M.)$
But $\sin ^{2} \theta \leq 1$. Therefore, $\frac{x^{2}+y^{2}}{2 x y}=1$
$\Rightarrow x=y$.