Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The equation of the radical axis of the circles 2x2+2y2+14x-18y+15=0 and 4x2+4y2-3x-y+5=0 , is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The equation of the radical axis of the circles $ 2{{x}^{2}}+2{{y}^{2}}+14x-18y+15=0 $ and $ 4{{x}^{2}}+4{{y}^{2}}-3x-y+5=0 $ , is
Jharkhand CECE
Jharkhand CECE 2010
A
$ 31x+35y-25=0 $
B
$ 31x-35y+25=0 $
C
$ 35x+31y-25=0 $
D
$ 35x-31y+25=0 $
Solution:
Let $ {{S}_{1}}\equiv 2{{x}^{2}}+2{{y}^{2}}+14x-18y+15=0 $
$ \Rightarrow $ $ {{S}_{1}}\equiv {{x}^{2}}+{{y}^{2}}+7x-9y+\frac{15}{2}=0 $ and $ {{S}_{2}}\equiv 4{{x}^{2}}+4{{y}^{2}}-3x-y+5=0 $
$ \Rightarrow $ $ {{S}_{2}}\equiv {{x}^{2}}+{{y}^{2}}-\frac{3}{4}x-\frac{1}{4}y+\frac{5}{4}=0 $
We know that, the equation of radical axis of two circles
$ {{S}_{1}} $ and $ {{S}_{2}} $ is given by $ {{S}_{1}}-{{S}_{2}}=0 $
$ \Rightarrow $ $ \left( {{x}^{2}}+{{y}^{2}}+7x-9y+\frac{15}{2} \right) $
$ -\left( {{x}^{2}}+{{y}^{2}}-\frac{3}{4}x-\frac{1}{4}y+\frac{5}{4} \right)=0 $
$ \Rightarrow $ $ \left( 7-\frac{3}{4} \right)x+\left( -9+\frac{1}{4} \right)y+\frac{15}{2}-\frac{5}{4}=0 $
$ \Rightarrow $ $ \frac{31}{4}x-\frac{35}{4}y+\frac{25}{4}=0 $
$ \Rightarrow $ $ 31x-35y+25=0 $