Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The equation of the plane which bisects the line joining (2, 3, 4) and (6, 7, 8), is

JamiaJamia 2014

Solution:

The mid-point of line joining $ ds=\frac{t}{2}dt $ and $ F=ma=m\frac{{{d}^{2}}s}{d{{t}^{2}}}=\frac{6{{d}^{2}}\left( \frac{{{t}^{2}}}{4} \right)}{d{{t}^{2}}}=3H $ is $ W=\int_{0}^{2}{Fds}=\int_{0}^{2}{3\frac{t}{2}}dt $ , $ =\frac{3}{2}\left( \frac{{{t}^{2}}}{2} \right)_{0}^{2}=\frac{3}{2}[{{(2)}^{2}}-{{(0)}^{2}}]=3J $ Now, consider option (c) $ T=2\pi \sqrt{\frac{l}{g}} $ $ \therefore $ $ =\frac{1}{360} $ $ =\frac{24\times 60}{360}\min $