Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The equation of the plane passing through three non-collinear points with position vectors $\vec{a}$, $\vec{b}$, $\vec{c}$ is

Three Dimensional Geometry

Solution:

Let $P\left(\vec{r}\right)$ be any point on plane.
Clearly $\vec{r}-\vec{a}$ will be in linear combination of $\vec{b}-\vec{a}$ and $\vec{c}-\vec{a}$
$\Rightarrow \vec{r}-\vec{a}$,
$\vec{b}-\vec{a}$,
$\vec{c}-\vec{a}$ will be coplanar
$\Rightarrow \left(\vec{r}-\vec{a}\right)\cdot\left\{\left(\vec{b}-\vec{a}\right)\times\left(\vec{c}-\vec{a}\right)\right\}=0$
$\Rightarrow \left(\vec{r}-\vec{a}\right)\cdot\left\{\vec{b}\times\vec{c}+\vec{a}\times\vec{b}+\vec{c}\times\vec{a}\right\}=0$
$\Rightarrow \vec{r}\cdot\left\{\vec{b}\times\vec{c}+\vec{c}\times\vec{a}+\vec{a}\times\vec{b}\right\}=\left[\vec{a}\,\vec{b}\,\vec{c}\right]$