Normal vector :
$\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\ 3&1&-2\\ 2&-5&-1\end{vmatrix}$
$ = -11 \hat{i} - \hat{j} + 17 \hat{k}$
So drs of normal to the required plane is
$<11,1,17>$
plane passes through (1,2,-3) So eq $^{ n }$ of plane:
$ 11(x-1)+1(y-2)+17(z+3)=0 $
$\Rightarrow 11 x+y+17 z+38=0$