Let $P (x, y)$ be any point on the conic. Then,
$\sqrt{\left(x -1\right)^{2} + \left( y + 1\right)^{2}} = \sqrt{2} \left(\frac{x - y + 1 }{\sqrt{2}}\right) $
$\Rightarrow \left(x - 1\right)^{2} + \left( y +1\right)^{2} = \left(x - y + 1\right)^{2}$
$ \Rightarrow 2xy - 4 x + 4y + 1 = 0 $